Cargando…
An Efficient Three-Dimensional Convolutional Neural Network for Inferring Physical Interaction Force from Video
Interaction forces are traditionally predicted by a contact type haptic sensor. In this paper, we propose a novel and practical method for inferring the interaction forces between two objects based only on video data—one of the non-contact type camera sensors—without the use of common haptic sensors...
Autores principales: | Kim, Dongyi, Cho, Hyeon, Shin, Hochul, Lim, Soo-Chul, Hwang, Wonjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720945/ https://www.ncbi.nlm.nih.gov/pubmed/31426463 http://dx.doi.org/10.3390/s19163579 |
Ejemplares similares
-
Inferring Interaction Force from Visual Information without Using Physical Force Sensors
por: Hwang, Wonjun, et al.
Publicado: (2017) -
Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network
por: Cho, Jungchan, et al.
Publicado: (2020) -
Automated Grooming Detection of Mouse by Three-Dimensional Convolutional Neural Network
por: Sakamoto, Naoaki, et al.
Publicado: (2022) -
Locating critical events in AFM force measurements by means of one-dimensional convolutional neural networks
por: Sotres, Javier, et al.
Publicado: (2022) -
Computation and memory optimized spectral domain convolutional neural network for throughput and energy-efficient inference
por: Rizvi, Shahriyar Masud, et al.
Publicado: (2022)