Cargando…
Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Diabetes Mellitus Predicted by 3D QSAR Pharmacophore Models, Molecular Docking and De Novo Evolution
Dipeptidyl peptidase-IV (DPP-IV) rapidly breaks down the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). Thus, the use of DPP-IV inhibitors to retard the degradation of endogenous GLP-1 is a possible mode of therapy correcting the defect in incre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720998/ https://www.ncbi.nlm.nih.gov/pubmed/31394858 http://dx.doi.org/10.3390/molecules24162870 |
Sumario: | Dipeptidyl peptidase-IV (DPP-IV) rapidly breaks down the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). Thus, the use of DPP-IV inhibitors to retard the degradation of endogenous GLP-1 is a possible mode of therapy correcting the defect in incretin-related physiology. The aim of this study is to find a new small molecule and explore the inhibition activity to the DPP-IV enzyme using a computer aided simulation. In this study, the predicted compounds were suggested as potent anti-diabetic candidates. Chosen structures were applied following computational strategies: The generation of the three-dimensional quantitative structure-activity relationship (3D QSAR) pharmacophore models, virtual screening, molecular docking, and de novo Evolution. The method also validated by performing re-docking and cross-docking studies of seven protein systems for which crystal structures were available for all bound ligands. The molecular docking experiments of predicted compounds within the binding pocket of DPP-IV were conducted. By using 25 training set inhibitors, ten pharmacophore models were generated, among which hypo1 was the best pharmacophore model with the best predictive power on account of the highest cost difference (352.03), the lowest root mean squared deviation (RMSD) (2.234), and the best correlation coefficient (0.925). Hypo1 pharmacophore model was used for virtual screening. A total of 161 compounds including 120 from the databases, 25 from the training set, 16 from the test set were selected for molecular docking. Analyzing the amino acid residues of the ligand-receptor interaction, it can be concluded that Arg125, Glu205, Glu206, Tyr547, Tyr662, and Tyr666 are the main amino acid residues. The last step in this study was de novo Evolution that generated 11 novel compounds. The derivative dpp4_45_Evo_1 by all scores CDOCKER_ENERGY (CDOCKER, -41.79), LigScore1 (LScore1, 5.86), LigScore2 (LScore2, 7.07), PLP1 (-112.01), PLP2 (-105.77), PMF (-162.5)—have exceeded the control compound. Thus the most active compound among 11 derivative compounds is dpp4_45_Evo_1. Additionally, for derivatives dpp4_42_Evo_1, dpp4_43_Evo2, dpp4_46_Evo_4, and dpp4_47_Evo_2, significant upward shifts were recorded. The consensus score for the derivatives of dpp4_45_Evo_1 from 1 to 6, dpp4_43_Evo2 from 4 to 6, dpp4_46_Evo_4 from 1 to 6, and dpp4_47_Evo_2 from 0 to 6 were increased. Generally, predicted candidates can act as potent occurring DPP-IV inhibitors given their ability to bind directly to the active sites of DPP-IV. Our result described that the 6 re-docked and 27 cross-docked protein-ligand complexes showed RMSD values of less than 2 Å. Further investigation will result in the development of novel and potential antidiabetic drugs. |
---|