Cargando…
Context Attention Heterogeneous Network Embedding
Network embedding (NE), which maps nodes into a low-dimensional latent Euclidean space to represent effective features of each node in the network, has obtained considerable attention in recent years. Many popular NE methods, such as DeepWalk, Node2vec, and LINE, are capable of handling homogeneous...
Autores principales: | Zhuo, Wei, Zhan, Qianyi, Liu, Yuan, Xie, Zhenping, Lu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721026/ https://www.ncbi.nlm.nih.gov/pubmed/31531010 http://dx.doi.org/10.1155/2019/8106073 |
Ejemplares similares
-
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
por: Yang, Luwei, et al.
Publicado: (2020) -
Heterogeneous network embedding enabling accurate disease association predictions
por: Xiong, Yun, et al.
Publicado: (2019) -
CoarSAS2hvec: Heterogeneous Information Network Embedding with Balanced Network Sampling
por: Zhan, Ling, et al.
Publicado: (2022) -
Annotating regulatory elements by heterogeneous network embedding
por: Lu, Yurun, et al.
Publicado: (2022) -
Attributed network embedding based on self-attention mechanism for recommendation method
por: Wang, Shuo, et al.
Publicado: (2023)