Cargando…

Computational Mechanistic Insights on the NO Oxidation Reaction Catalyzed by Non-Heme Biomimetic Cr-N-Tetramethylated Cyclam Complexes

The conversion reaction of NO to NO(3)(−) ion catalyzed by the end-on [Cr(III)(n-TMC)(O(2))(Cl)](+) superoxo and side-on [Cr(IV)(n-TMC)(O(2))(Cl)](+) peroxo non-heme complexes (n = 12, 13, 14 and 15), which are biomimetic systems of nitric oxide dioxygenases (NODs), has been explored using a computa...

Descripción completa

Detalles Bibliográficos
Autores principales: Marino, Tiziana, Fortino, Maria Grazia, Russo, Nino, Toscano, Marirosa, Alberto, Marta Erminia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721035/
https://www.ncbi.nlm.nih.gov/pubmed/31416223
http://dx.doi.org/10.3390/ijms20163955
Descripción
Sumario:The conversion reaction of NO to NO(3)(−) ion catalyzed by the end-on [Cr(III)(n-TMC)(O(2))(Cl)](+) superoxo and side-on [Cr(IV)(n-TMC)(O(2))(Cl)](+) peroxo non-heme complexes (n = 12, 13, 14 and 15), which are biomimetic systems of nitric oxide dioxygenases (NODs), has been explored using a computational protocol in the framework of density functional theory. Results show that the potential energy profiles for the studied reactions lie above the reagent energies, regardless of the used catalyst. Both the O-O bond breaking in the biomimetics and the NO(3)(−) ion formation require low energy barriers suggesting an efficient catalytic power of the studied systems. The rate-determining step depends on ligand size.