Cargando…
Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning
Four data-driven methods—random forest (RF), support vector machine (SVM), feed-forward neural network (FNN), and convolutional neural network (CNN)—are applied to discriminate surface and underwater vessels in the ocean using low-frequency acoustic pressure data. Acoustic data are modeled consideri...
Autores principales: | Choi, Jongkwon, Choo, Youngmin, Lee, Keunhwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721123/ https://www.ncbi.nlm.nih.gov/pubmed/31404999 http://dx.doi.org/10.3390/s19163492 |
Ejemplares similares
-
Frequency Analysis of Acoustic Data Using Multiple-Measurement Sparse Bayesian Learning
por: Shin, Myoungin, et al.
Publicado: (2021) -
Underwater Acoustic Signal Detection Using Calibrated Hidden Markov Model with Multiple Measurements
por: You, Heewon, et al.
Publicado: (2022) -
Passive Sonar Target Identification Using Multiple-Measurement Sparse Bayesian Learning
por: Shin, Myoungin, et al.
Publicado: (2022) -
A machine learning pipeline for classification of cetacean echolocation clicks in large underwater acoustic datasets
por: Frasier, Kaitlin E.
Publicado: (2021) -
Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm
por: Ke, Xiaoquan, et al.
Publicado: (2018)