Cargando…
Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System
Drift correction is an important concern in Electronic noses (E-nose) for maintaining stable performance during continuous work. A large number of reports have been presented for dealing with E-nose drift through machine-learning approaches in the laboratory. In this study, we aim to counter the dri...
Autores principales: | Liu, Tao, Li, Dongqi, Chen, Jianjun, Chen, Yanbing, Yang, Tao, Cao, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721181/ https://www.ncbi.nlm.nih.gov/pubmed/31430909 http://dx.doi.org/10.3390/s19163601 |
Ejemplares similares
-
Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose
por: Liu, Tao, et al.
Publicado: (2018) -
Cross-Domain Active Learning for Electronic Nose Drift Compensation
por: Sun, Fangyu, et al.
Publicado: (2022) -
Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System
por: Tao, Yang, et al.
Publicado: (2018) -
Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose
por: Tao, Yang, et al.
Publicado: (2019) -
Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine
por: Ma, Zhiyuan, et al.
Publicado: (2018)