Cargando…
MITRE: inferring features from microbiota time-series data linked to host status
Longitudinal studies are crucial for discovering causal relationships between the microbiome and human disease. We present MITRE, the Microbiome Interpretable Temporal Rule Engine, a supervised machine learning method for microbiome time-series analysis that infers human-interpretable rules linking...
Autores principales: | Bogart, Elijah, Creswell, Richard, Gerber, Georg K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721208/ https://www.ncbi.nlm.nih.gov/pubmed/31477162 http://dx.doi.org/10.1186/s13059-019-1788-y |
Ejemplares similares
-
MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
por: Bucci, Vanni, et al.
Publicado: (2016) -
Inferring Epistasis from Genetic Time-series Data
por: Sohail, Muhammad Saqib, et al.
Publicado: (2022) -
Higher Order Modes In Rectangular Waveguide Due To Mitred Bends
por: Bramham, Peter
Publicado: (1981) -
MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics
por: Maringanti, Venkata Suhas, et al.
Publicado: (2022) -
Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure
por: Guarracino, Fabio, et al.
Publicado: (2013)