Cargando…

A Real-Time Channel Prediction Model Based on Neural Networks for Dedicated Short-Range Communications

Based on a multiple layer perceptron neural networks, this paper presents a real-time channel prediction model, which could predict channel parameters such as path loss (PL) and packet drop (PD), for dedicated short-range communications (DSRC). The dataset used for training, validating, and testing...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tianhong, Liu, Sheng, Xiang, Weidong, Xu, Limei, Qin, Kaiyu, Yan, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721234/
https://www.ncbi.nlm.nih.gov/pubmed/31412691
http://dx.doi.org/10.3390/s19163541
Descripción
Sumario:Based on a multiple layer perceptron neural networks, this paper presents a real-time channel prediction model, which could predict channel parameters such as path loss (PL) and packet drop (PD), for dedicated short-range communications (DSRC). The dataset used for training, validating, and testing was extracted from experiments under several different road scenarios including highways, local areas, residential areas, state parks, and rural areas. The study shows that the proposed PL prediction model outperforms conventional empirical models. Meanwhile, the proposed PD prediction model achieves higher prediction accuracy than the statistical one. Moreover, the prediction model can operate in real-time, through updating its training set, to predict channel parameters. Such a model can be easily extended to the applications of autonomous driving, the Internet of Things (IoT), 5th generation cellular network technology (5G) and many others.