Cargando…
CBN-VAE: A Data Compression Model with Efficient Convolutional Structure for Wireless Sensor Networks
Data compression is a useful method to reduce the communication energy consumption in wireless sensor networks (WSNs). Most existing neural network compression methods focus on improving the compression and reconstruction accuracy (i.e., increasing parameters and layers), ignoring the computation co...
Autores principales: | Liu, Jianlin, Chen, Fenxiong, Yan, Jun, Wang, Dianhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721250/ https://www.ncbi.nlm.nih.gov/pubmed/31394773 http://dx.doi.org/10.3390/s19163445 |
Ejemplares similares
-
Data Compression Based on Stacked RBM-AE Model for Wireless Sensor Networks
por: Liu, Jianlin, et al.
Publicado: (2018) -
Convolutional neural network-based classification system design with compressed wireless sensor network images
por: Ahn, Jungmo, et al.
Publicado: (2018) -
Energy-Efficient Sensing in Wireless Sensor Networks Using Compressed Sensing
por: Razzaque, Mohammad Abdur, et al.
Publicado: (2014) -
An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks
por: Yin, Yihang, et al.
Publicado: (2015) -
Evaluation of Tunable Data Compression in Energy-Aware Wireless Sensor Networks
por: Ying, Beihua, et al.
Publicado: (2010)