Cargando…
EEG Signals Feature Extraction Based on DWT and EMD Combined with Approximate Entropy
The classification recognition rate of motor imagery is a key factor to improve the performance of brain–computer interface (BCI). Thus, we propose a feature extraction method based on discrete wavelet transform (DWT), empirical mode decomposition (EMD), and approximate entropy. Firstly, the electro...
Autores principales: | Ji, Na, Ma, Liang, Dong, Hui, Zhang, Xuejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721346/ https://www.ncbi.nlm.nih.gov/pubmed/31416258 http://dx.doi.org/10.3390/brainsci9080201 |
Ejemplares similares
-
DWT-EMD Feature Level Fusion Based Approach over Multi and Single Channel EEG Signals for Seizure Detection
por: Jana, Gopal Chandra, et al.
Publicado: (2022) -
Automated Detection of Caffeinated Coffee-Induced Short-Term Effects on ECG Signals Using EMD, DWT, and WPD
por: Pradhan, Bikash K., et al.
Publicado: (2022) -
Single-channel EEG signal extraction based on DWT, CEEMDAN, and ICA method
por: Hu, Qinghui, et al.
Publicado: (2022) -
A Hybrid EMD-Wavelet EEG Feature Extraction Method for the Classification of Students' Interest in the Mathematics Classroom
por: Babiker, Areej, et al.
Publicado: (2021) -
An Efficient and Automatic ECG Arrhythmia Diagnosis System using DWT and HOS Features and Entropy- Based Feature Selection Procedure
por: Chashmi, Abdullah Jafari, et al.
Publicado: (2019)