Cargando…

Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina

Commercially available white light-emitting diodes (LEDs) have an intense emission in the range of blue light, which has raised a range of public concerns about their potential risks as retinal hazards. Distinct from other visible light components, blue light is characterized by short wavelength, hi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Jin-Xin, Zhou, Wen-Chuan, Zhu, Xin-Gen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721470/
https://www.ncbi.nlm.nih.gov/pubmed/31531186
http://dx.doi.org/10.1155/2019/6435364
Descripción
Sumario:Commercially available white light-emitting diodes (LEDs) have an intense emission in the range of blue light, which has raised a range of public concerns about their potential risks as retinal hazards. Distinct from other visible light components, blue light is characterized by short wavelength, high energy, and strong penetration that can reach the retina with relatively little loss in damage potential. Mitochondria are abundant in retinal tissues, giving them relatively high access to blue light, and chromophores, which are enriched in the retina, have many mitochondria able to absorb blue light and induce photochemical effects. Therefore, excessive exposure of the retina to blue light tends to cause ROS accumulation and oxidative stress, which affect the structure and function of the retinal mitochondria and trigger mitochondria-involved death signaling pathways. In this review, we highlight the essential roles of mitochondria in blue light-induced photochemical damage and programmed cell death in the retina, indicate directions for future research and preventive targets in terms of the blue light hazard to the retina, and suggest applying LED devices in a rational way to prevent the blue light hazard.