Cargando…
Data-driven unsupervised clustering of online learner behaviour
The widespread adoption of online courses opens opportunities for analysing learner behaviour and optimising web-based learning adapted to observed usage. Here, we introduce a mathematical framework for the analysis of time-series of online learner engagement, which allows the identification of clus...
Autores principales: | Peach, Robert L., Yaliraki, Sophia N., Lefevre, David, Barahona, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722089/ https://www.ncbi.nlm.nih.gov/pubmed/31508242 http://dx.doi.org/10.1038/s41539-019-0054-0 |
Ejemplares similares
-
Understanding learner behaviour in online courses with Bayesian modelling and time series characterisation
por: Peach, Robert L., et al.
Publicado: (2021) -
From free text to clusters of content in health records: an unsupervised graph partitioning approach
por: Altuncu, M. Tarik, et al.
Publicado: (2019) -
Allostery and cooperativity in multimeric proteins: bond-to-bond propensities in ATCase
por: Hodges, Maxwell, et al.
Publicado: (2018) -
Allosteric Hotspots in the Main Protease of SARS-CoV-2
por: Strömich, Léonie, et al.
Publicado: (2022) -
Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering
por: Gool, Jari K., et al.
Publicado: (2022)