Cargando…
Training Optimization for Gate-Model Quantum Neural Networks
Gate-based quantum computations represent an essential to realize near-term quantum computer architectures. A gate-model quantum neural network (QNN) is a QNN implemented on a gate-model quantum computer, realized via a set of unitaries with associated gate parameters. Here, we define a training opt...
Autores principales: | Gyongyosi, Laszlo, Imre, Sandor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722103/ https://www.ncbi.nlm.nih.gov/pubmed/31481737 http://dx.doi.org/10.1038/s41598-019-48892-w |
Ejemplares similares
-
Scalable distributed gate-model quantum computers
por: Gyongyosi, Laszlo, et al.
Publicado: (2021) -
Circuit Depth Reduction for Gate-Model Quantum Computers
por: Gyongyosi, Laszlo, et al.
Publicado: (2020) -
Multilayer Optimization for the Quantum Internet
por: Gyongyosi, Laszlo, et al.
Publicado: (2018) -
Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices
por: Gyongyosi, Laszlo, et al.
Publicado: (2020) -
Quantum State Optimization and Computational Pathway Evaluation for Gate-Model Quantum Computers
por: Gyongyosi, Laszlo
Publicado: (2020)