Cargando…
Ultrathin acoustic cloaking by a conformal hybrid metasurface
Ultrathin acoustic cloaking of obstacles with arbitrary shape is achieved by a conformal hybrid metasurface, which is composed of an outer layer of phase-control metasurface (PCM) and an inner layer of near-zero-index metasurface (NZIM). Here, the PCM and NZIM are discretized into two types of labyr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722134/ https://www.ncbi.nlm.nih.gov/pubmed/31481745 http://dx.doi.org/10.1038/s41598-019-49148-3 |
Sumario: | Ultrathin acoustic cloaking of obstacles with arbitrary shape is achieved by a conformal hybrid metasurface, which is composed of an outer layer of phase-control metasurface (PCM) and an inner layer of near-zero-index metasurface (NZIM). Here, the PCM and NZIM are discretized into two types of labyrinth elements. The NZIM is functionally equivalent to an equiphase area and can guide the waves around the obstacle, while the PCM can perpendicularly transfer the incident waves to the NZIM and then control the emergent waves from NZIM to propagate along the original incident direction. The efficient cloaking by hybrid metasurface tightly covered on the edges of the square and circular obstacles is demonstrated, with a total thickness only 0.62 times of operating wavelength. |
---|