Cargando…
Fast Groupwise Registration Using Multi-Level and Multi-Resolution Graph Shrinkage
Groupwise registration aligns a set of images to a common space. It can however be inefficient and ineffective when dealing with datasets with significant anatomical variations. To mitigate these problems, we propose a groupwise registration framework based on hierarchical multi-level and multi-reso...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722141/ https://www.ncbi.nlm.nih.gov/pubmed/31481695 http://dx.doi.org/10.1038/s41598-019-48491-9 |
Sumario: | Groupwise registration aligns a set of images to a common space. It can however be inefficient and ineffective when dealing with datasets with significant anatomical variations. To mitigate these problems, we propose a groupwise registration framework based on hierarchical multi-level and multi-resolution shrinkage of a graph set. First, to deal with datasets with complex inhomogeneous image distributions, we divide the images hierarchically into multiple clusters. Since the images in each cluster have similar appearances, they can be registered effectively. Second, we employ a multi-resolution strategy to reduce computational cost. Experimental results on two public datasets show that our proposed method yields state-of-the-art registration accuracy with significantly reduced computational time. |
---|