Cargando…
Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol
Deoxynivalenol (DON) is one of the mycotoxins most frequently encountering in cereal-based foods throughout the world. Saccharomyces cerevisiae was used to alleviate porcine jejunal epithelia cell (IPEC-J2) injury induced by DON in this study. The results indicated that cell viability and proliferat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722165/ https://www.ncbi.nlm.nih.gov/pubmed/31482249 http://dx.doi.org/10.1186/s13568-019-0863-9 |
Sumario: | Deoxynivalenol (DON) is one of the mycotoxins most frequently encountering in cereal-based foods throughout the world. Saccharomyces cerevisiae was used to alleviate porcine jejunal epithelia cell (IPEC-J2) injury induced by DON in this study. The results indicated that cell viability and proliferation rates were significantly decreased when DON concentrations were increased from 0 to 64 µM after 24 h incubation (p < 0.05). The longer incubation time and higher DON concentrations would cause more serious effects on cell viability. S. cerevisiae could significantly degrade DON and decrease lactic dehydrogenase (LDH) release in the cells induced by DON (p < 0.05). DON (4 µM) could increase necrotic and apoptotic cell rates as well as decrease viable cell rates, compared with the control group (p < 0.05). However, S. cerevisiae addition in the DON group could decrease necrotic, late apoptotic and early apoptotic cell rates by 38.05%, 46.37% and 44.78% respectively, increase viable cell rates by 2.35%, compared with the single DON group (p < 0.05). In addition, S. cerevisiae addition could up-regulate mRNA abundances of IL-6, IL-8 and IL-10 in IPEC-J2 cells (p < 0.05), but down-regulate mRNA abundances of tight junction proteins (TJP-1) and occludin by 36.13% and 50.18% at 1 µM of DON (p < 0.05). It could be concluded that S. cerevisiae was able to alleviate IPEC-J2 cell damage exposed to DON. |
---|