Cargando…

Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency

In this paper, we propose a broadband absorption-controllable absorber based on nested nanostructure graphene and a narrowband frequency-tunable absorber utilizing gold-graphene hybrid structure in the terahertz regime. The numerical simulation results showed that the absorption of the broadband abs...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qihui, Liu, Peiguo, Liu, Chenxi, Zhou, Yuandong, Zha, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722701/
https://www.ncbi.nlm.nih.gov/pubmed/31398824
http://dx.doi.org/10.3390/nano9081138
Descripción
Sumario:In this paper, we propose a broadband absorption-controllable absorber based on nested nanostructure graphene and a narrowband frequency-tunable absorber utilizing gold-graphene hybrid structure in the terahertz regime. The numerical simulation results showed that the absorption of the broadband absorber can be changed from 27% to more than 90% over 0.75 to 1.7 THz by regulating the chemical potential of graphene. With the same regulation mechanism, the absorbing peak of the narrowband absorber can be moved from 2.29 to 2.48 THz continuously with absorption of 90%. Furthermore, via the cascade of the two types of absorbers, an independently tunable dual-band absorber is constituted. Its absorption spectrum is the superposition of absorption-controllable absorber and frequency-tunable absorber. The absorptivity and operating frequency of the two absorbing bands can be tuned independently without mutual inference. Moreover, it is insensitive to the polarization and it maintains high absorption over a wide range of incident angle. For the flexibility, tunability as well as the independence of polarization and angle, this design has wide prospects in various applications.