Cargando…

Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection

The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenes...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolloli, Afsal, Singh, Pooja, Rodriguez, G. Marcela, Subbian, Selvakumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722820/
https://www.ncbi.nlm.nih.gov/pubmed/31382404
http://dx.doi.org/10.3390/jcm8081155
_version_ 1783448628306640896
author Kolloli, Afsal
Singh, Pooja
Rodriguez, G. Marcela
Subbian, Selvakumar
author_facet Kolloli, Afsal
Singh, Pooja
Rodriguez, G. Marcela
Subbian, Selvakumar
author_sort Kolloli, Afsal
collection PubMed
description The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenesis, while Fe-supplementation to latently infected, asymptomatic individuals is a significant risk factor for disease reactivation. However, the effect of Fe-supplementation on the host immunity during latent Mtb infection remains unclear, due partly to the paucity in availability of animal models that recapitulate key pathophysiological features seen in humans. We have demonstrated that rabbits can develop non-progressive latency similar to infected humans. In this study, using this model we have evaluated the effect of Fe-supplementation on the bacterial growth, disease pathology, and immune response. Systemic and lung Fe parameters, gene expression profile, lung bacterial burden, and disease pathology were determined in the Mtb-infected/Fe- or placebo-supplemented rabbits. Results show that Fe-supplementation to Mtb-infected rabbits did not significantly change the hematocrit and Hb levels, although it elevated total Fe in the lungs. Expression of selected host iron- and immune-response genes in the blood and lungs was perturbed in Mtb-infected/Fe-supplemented rabbits. Iron-supplementation during acute or chronic stages of Mtb infection did not significantly affect the bacterial burden or disease pathology in the lungs. Data presented in this study is of significant relevance for current public health policies on Fe-supplementation therapy given to anemic patients with latent Mtb infection.
format Online
Article
Text
id pubmed-6722820
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67228202019-09-10 Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection Kolloli, Afsal Singh, Pooja Rodriguez, G. Marcela Subbian, Selvakumar J Clin Med Article The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenesis, while Fe-supplementation to latently infected, asymptomatic individuals is a significant risk factor for disease reactivation. However, the effect of Fe-supplementation on the host immunity during latent Mtb infection remains unclear, due partly to the paucity in availability of animal models that recapitulate key pathophysiological features seen in humans. We have demonstrated that rabbits can develop non-progressive latency similar to infected humans. In this study, using this model we have evaluated the effect of Fe-supplementation on the bacterial growth, disease pathology, and immune response. Systemic and lung Fe parameters, gene expression profile, lung bacterial burden, and disease pathology were determined in the Mtb-infected/Fe- or placebo-supplemented rabbits. Results show that Fe-supplementation to Mtb-infected rabbits did not significantly change the hematocrit and Hb levels, although it elevated total Fe in the lungs. Expression of selected host iron- and immune-response genes in the blood and lungs was perturbed in Mtb-infected/Fe-supplemented rabbits. Iron-supplementation during acute or chronic stages of Mtb infection did not significantly affect the bacterial burden or disease pathology in the lungs. Data presented in this study is of significant relevance for current public health policies on Fe-supplementation therapy given to anemic patients with latent Mtb infection. MDPI 2019-08-02 /pmc/articles/PMC6722820/ /pubmed/31382404 http://dx.doi.org/10.3390/jcm8081155 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kolloli, Afsal
Singh, Pooja
Rodriguez, G. Marcela
Subbian, Selvakumar
Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection
title Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection
title_full Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection
title_fullStr Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection
title_full_unstemmed Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection
title_short Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection
title_sort effect of iron supplementation on the outcome of non-progressive pulmonary mycobacterium tuberculosis infection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722820/
https://www.ncbi.nlm.nih.gov/pubmed/31382404
http://dx.doi.org/10.3390/jcm8081155
work_keys_str_mv AT kolloliafsal effectofironsupplementationontheoutcomeofnonprogressivepulmonarymycobacteriumtuberculosisinfection
AT singhpooja effectofironsupplementationontheoutcomeofnonprogressivepulmonarymycobacteriumtuberculosisinfection
AT rodriguezgmarcela effectofironsupplementationontheoutcomeofnonprogressivepulmonarymycobacteriumtuberculosisinfection
AT subbianselvakumar effectofironsupplementationontheoutcomeofnonprogressivepulmonarymycobacteriumtuberculosisinfection