Cargando…
Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization
The present study focuses on the development of multiresponsive core-shell microgels and the manipulation of their swelling properties by copolymerization of different acrylamides—especially N-isopropylacrylamide (NIPAM), N-isopropylmethacrylamide (NIPMAM), and NNPAM—and acrylic acid. We use atomic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722827/ https://www.ncbi.nlm.nih.gov/pubmed/31370213 http://dx.doi.org/10.3390/polym11081269 |
_version_ | 1783448630030499840 |
---|---|
author | Brändel, Timo Dirksen, Maxim Hellweg, Thomas |
author_facet | Brändel, Timo Dirksen, Maxim Hellweg, Thomas |
author_sort | Brändel, Timo |
collection | PubMed |
description | The present study focuses on the development of multiresponsive core-shell microgels and the manipulation of their swelling properties by copolymerization of different acrylamides—especially N-isopropylacrylamide (NIPAM), N-isopropylmethacrylamide (NIPMAM), and NNPAM—and acrylic acid. We use atomic force microscopy for the dry-state characterization of the microgel particles and photon correlation spectroscopy to investigate the swelling behavior at neutral (pH 7) and acidic (pH 4) conditions. A transition between an interpenetrating network structure for microgels with a pure poly-N,n-propylacrylamide (PNNPAM) shell and a distinct core-shell morphology for microgels with a pure poly-N-isopropylmethacrylamide (PNIPMAM) shell is observable. The PNIPMAM molfraction of the shell also has an important influence on the particle rigidity because of the decreasing degree of interpenetration. Furthermore, the swelling behavior of the microgels is tunable by adjustment of the pH-value between a single-step volume phase transition and a linear swelling region at temperatures corresponding to the copolymer ratios of the shell. This flexibility makes the multiresponsive copolymer microgels interesting candidates for many applications, e.g., as membrane material with tunable permeability. |
format | Online Article Text |
id | pubmed-6722827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67228272019-09-10 Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization Brändel, Timo Dirksen, Maxim Hellweg, Thomas Polymers (Basel) Article The present study focuses on the development of multiresponsive core-shell microgels and the manipulation of their swelling properties by copolymerization of different acrylamides—especially N-isopropylacrylamide (NIPAM), N-isopropylmethacrylamide (NIPMAM), and NNPAM—and acrylic acid. We use atomic force microscopy for the dry-state characterization of the microgel particles and photon correlation spectroscopy to investigate the swelling behavior at neutral (pH 7) and acidic (pH 4) conditions. A transition between an interpenetrating network structure for microgels with a pure poly-N,n-propylacrylamide (PNNPAM) shell and a distinct core-shell morphology for microgels with a pure poly-N-isopropylmethacrylamide (PNIPMAM) shell is observable. The PNIPMAM molfraction of the shell also has an important influence on the particle rigidity because of the decreasing degree of interpenetration. Furthermore, the swelling behavior of the microgels is tunable by adjustment of the pH-value between a single-step volume phase transition and a linear swelling region at temperatures corresponding to the copolymer ratios of the shell. This flexibility makes the multiresponsive copolymer microgels interesting candidates for many applications, e.g., as membrane material with tunable permeability. MDPI 2019-07-31 /pmc/articles/PMC6722827/ /pubmed/31370213 http://dx.doi.org/10.3390/polym11081269 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Brändel, Timo Dirksen, Maxim Hellweg, Thomas Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization |
title | Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization |
title_full | Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization |
title_fullStr | Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization |
title_full_unstemmed | Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization |
title_short | Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization |
title_sort | tuning the swelling properties of smart multiresponsive core-shell microgels by copolymerization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722827/ https://www.ncbi.nlm.nih.gov/pubmed/31370213 http://dx.doi.org/10.3390/polym11081269 |
work_keys_str_mv | AT brandeltimo tuningtheswellingpropertiesofsmartmultiresponsivecoreshellmicrogelsbycopolymerization AT dirksenmaxim tuningtheswellingpropertiesofsmartmultiresponsivecoreshellmicrogelsbycopolymerization AT hellwegthomas tuningtheswellingpropertiesofsmartmultiresponsivecoreshellmicrogelsbycopolymerization |