Cargando…
DNILMF-LDA: Prediction of lncRNA-Disease Associations by Dual-Network Integrated Logistic Matrix Factorization and Bayesian Optimization
Identifying associations between lncRNAs and diseases can help understand disease-related lncRNAs and facilitate disease diagnosis and treatment. The dual-network integrated logistic matrix factorization (DNILMF) model has been used for drug–target interaction prediction, and good results have been...
Autores principales: | Li, Yan, Li, Junyi, Bian, Naizheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722840/ https://www.ncbi.nlm.nih.gov/pubmed/31409034 http://dx.doi.org/10.3390/genes10080608 |
Ejemplares similares
-
SKF-LDA: Similarity Kernel Fusion for Predicting lncRNA-Disease Association
por: Xie, Guobo, et al.
Publicado: (2019) -
IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-Protein Interaction Prediction
por: Zhao, Qi, et al.
Publicado: (2018) -
LncRNA CASC 2 is upregulated in aphthous stomatitis and predicts the recurrence
por: Lu, Jiaping, et al.
Publicado: (2020) -
LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization
por: Liu, Hongsheng, et al.
Publicado: (2017) -
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
por: Hao, Ming, et al.
Publicado: (2017)