Cargando…

Cellular calcification induced by inorganic polyphosphate involves ATP depletion and opening of the mitochondrial permeability transition pore (mPTP)

Inorganic polyphosphate (polyP) is a linear polymer containing tens to hundreds of orthophosphate residues linked by high‐energy phosphoanhydride bonds. PolyP promotes osteocalcification and bone mineralization in both mouse and human osteoblastic cells. In the present study, we examined the molecul...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsutsumi, Kaori, Sasase, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722881/
https://www.ncbi.nlm.nih.gov/pubmed/31325410
http://dx.doi.org/10.1002/2211-5463.12703
Descripción
Sumario:Inorganic polyphosphate (polyP) is a linear polymer containing tens to hundreds of orthophosphate residues linked by high‐energy phosphoanhydride bonds. PolyP promotes osteocalcification and bone mineralization in both mouse and human osteoblastic cells. In the present study, we examined the molecular mechanism by which polyP affects mitochondrial metabolism to promote cellular calcification in MC3T3‐E1 osteoblastic cells. The cellular content of adenosine triphosphate (ATP) was diminished one day after polyP treatment, and this was accompanied by increased conversion to adenosine diphosphate. Furthermore, mitochondrial membrane potential was significantly decreased in polyP‐treated cells. These results suggest that the depletion of intracellular ATP and the decrease in mitochondrial membrane potential induced by polyP treatment may be a trigger to promote cell calcification.