Cargando…

The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools

Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material propertie...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ruiyan, Jin, Li, Zhang, Ning, Petridis, Athanasios K., Eckert, Thomas, Scheiner-Bobis, Georgios, Bergmann, Martin, Scheidig, Axel, Schauer, Roland, Yan, Mingdi, Wijesundera, Samurdhi A., Nordén, Bengt, Chatterjee, Barun K., Siebert, Hans-Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722915/
https://www.ncbi.nlm.nih.gov/pubmed/31409009
http://dx.doi.org/10.3390/md17080469
_version_ 1783448651304009728
author Zhang, Ruiyan
Jin, Li
Zhang, Ning
Petridis, Athanasios K.
Eckert, Thomas
Scheiner-Bobis, Georgios
Bergmann, Martin
Scheidig, Axel
Schauer, Roland
Yan, Mingdi
Wijesundera, Samurdhi A.
Nordén, Bengt
Chatterjee, Barun K.
Siebert, Hans-Christian
author_facet Zhang, Ruiyan
Jin, Li
Zhang, Ning
Petridis, Athanasios K.
Eckert, Thomas
Scheiner-Bobis, Georgios
Bergmann, Martin
Scheidig, Axel
Schauer, Roland
Yan, Mingdi
Wijesundera, Samurdhi A.
Nordén, Bengt
Chatterjee, Barun K.
Siebert, Hans-Christian
author_sort Zhang, Ruiyan
collection PubMed
description Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices.
format Online
Article
Text
id pubmed-6722915
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67229152019-09-10 The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools Zhang, Ruiyan Jin, Li Zhang, Ning Petridis, Athanasios K. Eckert, Thomas Scheiner-Bobis, Georgios Bergmann, Martin Scheidig, Axel Schauer, Roland Yan, Mingdi Wijesundera, Samurdhi A. Nordén, Bengt Chatterjee, Barun K. Siebert, Hans-Christian Mar Drugs Article Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices. MDPI 2019-08-12 /pmc/articles/PMC6722915/ /pubmed/31409009 http://dx.doi.org/10.3390/md17080469 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Ruiyan
Jin, Li
Zhang, Ning
Petridis, Athanasios K.
Eckert, Thomas
Scheiner-Bobis, Georgios
Bergmann, Martin
Scheidig, Axel
Schauer, Roland
Yan, Mingdi
Wijesundera, Samurdhi A.
Nordén, Bengt
Chatterjee, Barun K.
Siebert, Hans-Christian
The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools
title The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools
title_full The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools
title_fullStr The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools
title_full_unstemmed The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools
title_short The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is a Role Model for Nanomedical Diagnostic and Therapeutic Tools
title_sort sialic acid-dependent nematocyst discharge process in relation to its physical-chemical properties is a role model for nanomedical diagnostic and therapeutic tools
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722915/
https://www.ncbi.nlm.nih.gov/pubmed/31409009
http://dx.doi.org/10.3390/md17080469
work_keys_str_mv AT zhangruiyan thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT jinli thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT zhangning thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT petridisathanasiosk thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT eckertthomas thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT scheinerbobisgeorgios thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT bergmannmartin thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT scheidigaxel thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT schauerroland thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT yanmingdi thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT wijesunderasamurdhia thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT nordenbengt thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT chatterjeebarunk thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT sieberthanschristian thesialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT zhangruiyan sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT jinli sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT zhangning sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT petridisathanasiosk sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT eckertthomas sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT scheinerbobisgeorgios sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT bergmannmartin sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT scheidigaxel sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT schauerroland sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT yanmingdi sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT wijesunderasamurdhia sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT nordenbengt sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT chatterjeebarunk sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools
AT sieberthanschristian sialicaciddependentnematocystdischargeprocessinrelationtoitsphysicalchemicalpropertiesisarolemodelfornanomedicaldiagnosticandtherapeutictools