Cargando…
Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury
Traumatic brain injury (TBI) is a major cause of death and disability. Despite progress in neurosurgery and critical care, patients still lack a form of neuroprotective treatment that can counteract or attenuate injury progression. Inflammation after TBI is a key modulator of injury progression and...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722937/ https://www.ncbi.nlm.nih.gov/pubmed/31366109 http://dx.doi.org/10.3390/jcm8081134 |
_version_ | 1783448656584638464 |
---|---|
author | Vegliante, Gloria Tolomeo, Daniele Drieu, Antoine Rubio, Marina Micotti, Edoardo Moro, Federico Vivien, Denis Forloni, Gianluigi Ali, Carine Zanier, Elisa R. |
author_facet | Vegliante, Gloria Tolomeo, Daniele Drieu, Antoine Rubio, Marina Micotti, Edoardo Moro, Federico Vivien, Denis Forloni, Gianluigi Ali, Carine Zanier, Elisa R. |
author_sort | Vegliante, Gloria |
collection | PubMed |
description | Traumatic brain injury (TBI) is a major cause of death and disability. Despite progress in neurosurgery and critical care, patients still lack a form of neuroprotective treatment that can counteract or attenuate injury progression. Inflammation after TBI is a key modulator of injury progression and neurodegeneration, but its spatiotemporal dissemination is only partially known. In vivo approaches to study post-traumatic inflammation longitudinally are pivotal for monitoring injury progression/recovery and the effectiveness of therapeutic approaches. Here, we provide a minimally invasive, highly sensitive in vivo molecular magnetic resonance imaging (MRI) characterization of endothelial activation associated to neuroinflammatory response after severe TBI in mice, using microparticles of iron oxide targeting P-selectin (MPIOs-α-P-selectin). Strong endothelial activation was detected from 24 h in perilesional regions, including the cortex and hippocampus, and peaked in intensity and diffusion at two days, then partially decreased but persisted up to seven days and was back to baseline 15 days after injury. There was a close correspondence between MPIOs-α-P-selectin signal voids and the P-selectin stained area, confirming maximal endothelial activation at two days. Molecular MRI markers of inflammation may thus represent a useful tool to evaluate in vivo endothelial activation in TBI and monitoring the responses to therapeutic agents targeting vascular activation and permeability. |
format | Online Article Text |
id | pubmed-6722937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67229372019-09-10 Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury Vegliante, Gloria Tolomeo, Daniele Drieu, Antoine Rubio, Marina Micotti, Edoardo Moro, Federico Vivien, Denis Forloni, Gianluigi Ali, Carine Zanier, Elisa R. J Clin Med Article Traumatic brain injury (TBI) is a major cause of death and disability. Despite progress in neurosurgery and critical care, patients still lack a form of neuroprotective treatment that can counteract or attenuate injury progression. Inflammation after TBI is a key modulator of injury progression and neurodegeneration, but its spatiotemporal dissemination is only partially known. In vivo approaches to study post-traumatic inflammation longitudinally are pivotal for monitoring injury progression/recovery and the effectiveness of therapeutic approaches. Here, we provide a minimally invasive, highly sensitive in vivo molecular magnetic resonance imaging (MRI) characterization of endothelial activation associated to neuroinflammatory response after severe TBI in mice, using microparticles of iron oxide targeting P-selectin (MPIOs-α-P-selectin). Strong endothelial activation was detected from 24 h in perilesional regions, including the cortex and hippocampus, and peaked in intensity and diffusion at two days, then partially decreased but persisted up to seven days and was back to baseline 15 days after injury. There was a close correspondence between MPIOs-α-P-selectin signal voids and the P-selectin stained area, confirming maximal endothelial activation at two days. Molecular MRI markers of inflammation may thus represent a useful tool to evaluate in vivo endothelial activation in TBI and monitoring the responses to therapeutic agents targeting vascular activation and permeability. MDPI 2019-07-30 /pmc/articles/PMC6722937/ /pubmed/31366109 http://dx.doi.org/10.3390/jcm8081134 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vegliante, Gloria Tolomeo, Daniele Drieu, Antoine Rubio, Marina Micotti, Edoardo Moro, Federico Vivien, Denis Forloni, Gianluigi Ali, Carine Zanier, Elisa R. Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury |
title | Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury |
title_full | Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury |
title_fullStr | Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury |
title_full_unstemmed | Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury |
title_short | Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury |
title_sort | longitudinal molecular magnetic resonance imaging of endothelial activation after severe traumatic brain injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722937/ https://www.ncbi.nlm.nih.gov/pubmed/31366109 http://dx.doi.org/10.3390/jcm8081134 |
work_keys_str_mv | AT vegliantegloria longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT tolomeodaniele longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT drieuantoine longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT rubiomarina longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT micottiedoardo longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT morofederico longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT viviendenis longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT forlonigianluigi longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT alicarine longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury AT zanierelisar longitudinalmolecularmagneticresonanceimagingofendothelialactivationafterseveretraumaticbraininjury |