Cargando…
Functionalized Cellulose Nanocrystals: A Potential Fire Retardant for Polymer Composites
The flammability of synthetic thermoplastic polymers has been recognized as an increasingly important safety problem. The goal of this study was to evaluate a green and safe fire-retardant system comprising of cellulose nanocrystals (CNC) and zinc oxide nanoparticles (ZnO). CNCs coated with nano ZnO...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722989/ https://www.ncbi.nlm.nih.gov/pubmed/31426592 http://dx.doi.org/10.3390/polym11081361 |
Sumario: | The flammability of synthetic thermoplastic polymers has been recognized as an increasingly important safety problem. The goal of this study was to evaluate a green and safe fire-retardant system comprising of cellulose nanocrystals (CNC) and zinc oxide nanoparticles (ZnO). CNCs coated with nano ZnO were incorporated in the high-density polyethylene polymer (HDPE) matrix at different concentrations. Fire testing results of different formulations of HDPE containing 0.4 to 1.0% zinc oxide coated CNC exhibited a substantial decrease in the average mass loss, peak heat release rate and total smoke release. The time to ignition exhibited a positive correlation with CNC-ZnO concentration. Modest improvement in the flexural strength and moduli of composites was noticed validating no adverse effects of CNC-ZnO complex. The transmission electron microscopy further confirmed dispersion of nanoparticles as well as the presence of some nanoparticle aggregates in the matrix. The uniform dispersion of CNC-ZnO complex is expected to further improve fire and mechanical properties of polymer. |
---|