Cargando…
Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy
The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glau...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723090/ https://www.ncbi.nlm.nih.gov/pubmed/31443184 http://dx.doi.org/10.3390/jcm8081222 |
_version_ | 1783448687771385856 |
---|---|
author | Schmelter, Carsten Fomo, Kristian Nzogang Perumal, Natarajan Manicam, Caroline Bell, Katharina Pfeiffer, Norbert Grus, Franz H. |
author_facet | Schmelter, Carsten Fomo, Kristian Nzogang Perumal, Natarajan Manicam, Caroline Bell, Katharina Pfeiffer, Norbert Grus, Franz H. |
author_sort | Schmelter, Carsten |
collection | PubMed |
description | The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate of RGCs (p = 0.013). We subsequently performed affinity capture experiments that verified the mitochondrial serine protease HTRA2 (gene name: HTRA2) as a high-affinity retinal epitope target of CDR1 sequence motif ASGYTFTNYGLSWVR. Quantitative proteomic analysis of the CDR-treated retinal explants revealed increased expression of various anti-apoptotic and anti-oxidative proteins (e.g., VDAC2 and TXN) compared to untreated controls (p < 0.05) as well as decreased expression levels of cellular stress response markers (e.g., HSPE1 and HSP90AA1). Mitochondrial dysfunction, the protein ubiquitination pathway and oxidative phosphorylation were annotated as the most significantly affected signaling pathways and possibly can be traced back to the CDR-induced inhibition or modulation of the master regulator HTRA2. These findings emphasize the great potential of synthetic polyclonal-derived CDR peptides as therapeutic agents in future glaucoma therapy and provide an excellent basis for affinity-based biomarker discovery purposes. |
format | Online Article Text |
id | pubmed-6723090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67230902019-09-10 Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy Schmelter, Carsten Fomo, Kristian Nzogang Perumal, Natarajan Manicam, Caroline Bell, Katharina Pfeiffer, Norbert Grus, Franz H. J Clin Med Article The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate of RGCs (p = 0.013). We subsequently performed affinity capture experiments that verified the mitochondrial serine protease HTRA2 (gene name: HTRA2) as a high-affinity retinal epitope target of CDR1 sequence motif ASGYTFTNYGLSWVR. Quantitative proteomic analysis of the CDR-treated retinal explants revealed increased expression of various anti-apoptotic and anti-oxidative proteins (e.g., VDAC2 and TXN) compared to untreated controls (p < 0.05) as well as decreased expression levels of cellular stress response markers (e.g., HSPE1 and HSP90AA1). Mitochondrial dysfunction, the protein ubiquitination pathway and oxidative phosphorylation were annotated as the most significantly affected signaling pathways and possibly can be traced back to the CDR-induced inhibition or modulation of the master regulator HTRA2. These findings emphasize the great potential of synthetic polyclonal-derived CDR peptides as therapeutic agents in future glaucoma therapy and provide an excellent basis for affinity-based biomarker discovery purposes. MDPI 2019-08-15 /pmc/articles/PMC6723090/ /pubmed/31443184 http://dx.doi.org/10.3390/jcm8081222 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schmelter, Carsten Fomo, Kristian Nzogang Perumal, Natarajan Manicam, Caroline Bell, Katharina Pfeiffer, Norbert Grus, Franz H. Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy |
title | Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy |
title_full | Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy |
title_fullStr | Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy |
title_full_unstemmed | Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy |
title_short | Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy |
title_sort | synthetic polyclonal-derived cdr peptides as an innovative strategy in glaucoma therapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723090/ https://www.ncbi.nlm.nih.gov/pubmed/31443184 http://dx.doi.org/10.3390/jcm8081222 |
work_keys_str_mv | AT schmeltercarsten syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy AT fomokristiannzogang syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy AT perumalnatarajan syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy AT manicamcaroline syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy AT bellkatharina syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy AT pfeiffernorbert syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy AT grusfranzh syntheticpolyclonalderivedcdrpeptidesasaninnovativestrategyinglaucomatherapy |