Cargando…
Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis
Knowing when a machine learning system is not confident about its prediction is crucial in medical domains where safety is critical. Ideally, a machine learning algorithm should make a prediction only when it is highly certain about its competency, and refer the case to physicians otherwise. In this...
Autores principales: | Mobiny, Aryan, Singh, Aditi, Van Nguyen, Hien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723257/ https://www.ncbi.nlm.nih.gov/pubmed/31426482 http://dx.doi.org/10.3390/jcm8081241 |
Ejemplares similares
-
Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks
por: Maric, Dragan, et al.
Publicado: (2021) -
DropConnect is effective in modeling uncertainty of Bayesian deep networks
por: Mobiny, Aryan, et al.
Publicado: (2021) -
Federated Machine Learning for Skin Lesion Diagnosis: An Asynchronous and Weighted Approach
por: Yaqoob, Muhammad Mateen, et al.
Publicado: (2023) -
Machine-Learning Classifiers in Discrimination of Lesions Located in the Anterior Skull Base
por: Zhang, Yang, et al.
Publicado: (2020) -
Classifying Drugs by their Arrhythmogenic Risk Using Machine Learning
por: Sahli-Costabal, Francisco, et al.
Publicado: (2020)