Cargando…
Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry?
Since 1999, atmospheric and snow chemists have shown that snow is a very active photochemical reactor that releases reactive gaseous species to the atmosphere including nitrogen oxides, hydrocarbons, aldehydes, halocarbons, carboxylic acids and mercury. Snow photochemistry therefore affects the form...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723259/ https://www.ncbi.nlm.nih.gov/pubmed/31416183 http://dx.doi.org/10.3390/microorganisms7080260 |
_version_ | 1783448726366322688 |
---|---|
author | Domine, Florent |
author_facet | Domine, Florent |
author_sort | Domine, Florent |
collection | PubMed |
description | Since 1999, atmospheric and snow chemists have shown that snow is a very active photochemical reactor that releases reactive gaseous species to the atmosphere including nitrogen oxides, hydrocarbons, aldehydes, halocarbons, carboxylic acids and mercury. Snow photochemistry therefore affects the formation of ozone, a potent greenhouse gas, and of aerosols, which affect the radiative budget of the planet and, therefore, its climate. In parallel, microbiologists have investigated microbes in snow, identified and quantified species, and sometimes discussed their nutrient supplies and metabolism, implicitly acknowledging that microbes could modify snow chemical composition. However, it is only in the past 10 years that a small number of studies have revealed that microbial activity in cold snow (< 0 °C, in the absence of significant amounts of liquid water) could lead to the release of nitrogen oxides, halocarbons, and mercury into the atmosphere. I argue here that microbes may have a significant effect on snow and atmospheric composition, especially during the polar night when photochemistry is shut off. Collaborative studies between microbiologists and snow and atmospheric chemists are needed to investigate this little-explored field. |
format | Online Article Text |
id | pubmed-6723259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67232592019-09-10 Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? Domine, Florent Microorganisms Opinion Since 1999, atmospheric and snow chemists have shown that snow is a very active photochemical reactor that releases reactive gaseous species to the atmosphere including nitrogen oxides, hydrocarbons, aldehydes, halocarbons, carboxylic acids and mercury. Snow photochemistry therefore affects the formation of ozone, a potent greenhouse gas, and of aerosols, which affect the radiative budget of the planet and, therefore, its climate. In parallel, microbiologists have investigated microbes in snow, identified and quantified species, and sometimes discussed their nutrient supplies and metabolism, implicitly acknowledging that microbes could modify snow chemical composition. However, it is only in the past 10 years that a small number of studies have revealed that microbial activity in cold snow (< 0 °C, in the absence of significant amounts of liquid water) could lead to the release of nitrogen oxides, halocarbons, and mercury into the atmosphere. I argue here that microbes may have a significant effect on snow and atmospheric composition, especially during the polar night when photochemistry is shut off. Collaborative studies between microbiologists and snow and atmospheric chemists are needed to investigate this little-explored field. MDPI 2019-08-14 /pmc/articles/PMC6723259/ /pubmed/31416183 http://dx.doi.org/10.3390/microorganisms7080260 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Opinion Domine, Florent Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? |
title | Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? |
title_full | Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? |
title_fullStr | Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? |
title_full_unstemmed | Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? |
title_short | Should We Not Further Study the Impact of Microbial Activity on Snow and Polar Atmospheric Chemistry? |
title_sort | should we not further study the impact of microbial activity on snow and polar atmospheric chemistry? |
topic | Opinion |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723259/ https://www.ncbi.nlm.nih.gov/pubmed/31416183 http://dx.doi.org/10.3390/microorganisms7080260 |
work_keys_str_mv | AT domineflorent shouldwenotfurtherstudytheimpactofmicrobialactivityonsnowandpolaratmosphericchemistry |