Cargando…

Varied Effects of Tending Ant Species on the Development of Facultatively Myrmecophilous Lycaenid Butterfly Larvae

Ants often tend and protect the larvae of various myrmecophilous lycaenid species, which influences the fitness of butterflies by altering their growth and developmental time. Tending produces diverse effects depending on lycaenid sex and the lycaenid/ant species combination. Effects are widely vari...

Descripción completa

Detalles Bibliográficos
Autores principales: Mizuno, Takafumi, Hagiwara, Yasuo, Akino, Toshiharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723302/
https://www.ncbi.nlm.nih.gov/pubmed/31374954
http://dx.doi.org/10.3390/insects10080234
Descripción
Sumario:Ants often tend and protect the larvae of various myrmecophilous lycaenid species, which influences the fitness of butterflies by altering their growth and developmental time. Tending produces diverse effects depending on lycaenid sex and the lycaenid/ant species combination. Effects are widely variable, especially in facultatively myrmecophilous lycaenids such as Plebejus argyrognomon praeterinsularis, because they are associated with several ant species and can survive without any ant tending. We studied the effects of ant tending on the adult body mass and larval developmental time of P. argyrognomon praeterinsularis. Female larvae grew significantly heavier as adults when tended by Camponotus japonicus rather than by either Lasius japonicus or no ant species. Ant tending did not affect the body mass of adult males or the developmental time of either male or female larvae. Thus, tending by C. japonicus could increase the fitness of P. argyrognomon praeterinsularis by increasing the mass of females without prolonging the duration of vulnerable immature stages, because larger females generally lay more eggs. This means that even facultatively myrmecophilous lycaenids might gain fitness benefits from particular ant species, which could be important in the conservation and management of at-risk species of facultatively myrmecophilous lycaenids.