Cargando…

Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds

In this work, biochar (BC) derived from spent coffee grounds has been incorporated into high density polyethylene (PE) through melt mixing. The influence of the filler content on the rheological and thermal behavior of the obtained composites was assessed. In particular, a rheological study was perf...

Descripción completa

Detalles Bibliográficos
Autores principales: Arrigo, Rossella, Jagdale, Pravin, Bartoli, Mattia, Tagliaferro, Alberto, Malucelli, Giulio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723324/
https://www.ncbi.nlm.nih.gov/pubmed/31409023
http://dx.doi.org/10.3390/polym11081336
Descripción
Sumario:In this work, biochar (BC) derived from spent coffee grounds has been incorporated into high density polyethylene (PE) through melt mixing. The influence of the filler content on the rheological and thermal behavior of the obtained composites was assessed. In particular, a rheological study was performed systematically using different flow fields, including linear and nonlinear dynamic shear flow, revealing that the dynamics of PE macromolecules in the composite materials are slowed down because of the confinement of the polymer chains onto the filler surface and/or within the BC porous structure. Oscillatory amplitude sweep tests indicated that composites show weak strain overshoot behavior in the nonlinear regime: This finding clearly proves the formation of weak structural complexes, which cause a retardation of the macromolecular chains dynamics. Furthermore, the embedded BC particles were able to improve the thermo-oxidative stability of PE-based composites, remarkably increasing the PE decomposition temperatures.