Cargando…
Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds
In this work, biochar (BC) derived from spent coffee grounds has been incorporated into high density polyethylene (PE) through melt mixing. The influence of the filler content on the rheological and thermal behavior of the obtained composites was assessed. In particular, a rheological study was perf...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723324/ https://www.ncbi.nlm.nih.gov/pubmed/31409023 http://dx.doi.org/10.3390/polym11081336 |
_version_ | 1783448741537120256 |
---|---|
author | Arrigo, Rossella Jagdale, Pravin Bartoli, Mattia Tagliaferro, Alberto Malucelli, Giulio |
author_facet | Arrigo, Rossella Jagdale, Pravin Bartoli, Mattia Tagliaferro, Alberto Malucelli, Giulio |
author_sort | Arrigo, Rossella |
collection | PubMed |
description | In this work, biochar (BC) derived from spent coffee grounds has been incorporated into high density polyethylene (PE) through melt mixing. The influence of the filler content on the rheological and thermal behavior of the obtained composites was assessed. In particular, a rheological study was performed systematically using different flow fields, including linear and nonlinear dynamic shear flow, revealing that the dynamics of PE macromolecules in the composite materials are slowed down because of the confinement of the polymer chains onto the filler surface and/or within the BC porous structure. Oscillatory amplitude sweep tests indicated that composites show weak strain overshoot behavior in the nonlinear regime: This finding clearly proves the formation of weak structural complexes, which cause a retardation of the macromolecular chains dynamics. Furthermore, the embedded BC particles were able to improve the thermo-oxidative stability of PE-based composites, remarkably increasing the PE decomposition temperatures. |
format | Online Article Text |
id | pubmed-6723324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67233242019-09-10 Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds Arrigo, Rossella Jagdale, Pravin Bartoli, Mattia Tagliaferro, Alberto Malucelli, Giulio Polymers (Basel) Article In this work, biochar (BC) derived from spent coffee grounds has been incorporated into high density polyethylene (PE) through melt mixing. The influence of the filler content on the rheological and thermal behavior of the obtained composites was assessed. In particular, a rheological study was performed systematically using different flow fields, including linear and nonlinear dynamic shear flow, revealing that the dynamics of PE macromolecules in the composite materials are slowed down because of the confinement of the polymer chains onto the filler surface and/or within the BC porous structure. Oscillatory amplitude sweep tests indicated that composites show weak strain overshoot behavior in the nonlinear regime: This finding clearly proves the formation of weak structural complexes, which cause a retardation of the macromolecular chains dynamics. Furthermore, the embedded BC particles were able to improve the thermo-oxidative stability of PE-based composites, remarkably increasing the PE decomposition temperatures. MDPI 2019-08-12 /pmc/articles/PMC6723324/ /pubmed/31409023 http://dx.doi.org/10.3390/polym11081336 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Arrigo, Rossella Jagdale, Pravin Bartoli, Mattia Tagliaferro, Alberto Malucelli, Giulio Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds |
title | Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds |
title_full | Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds |
title_fullStr | Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds |
title_full_unstemmed | Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds |
title_short | Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds |
title_sort | structure–property relationships in polyethylene-based composites filled with biochar derived from waste coffee grounds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723324/ https://www.ncbi.nlm.nih.gov/pubmed/31409023 http://dx.doi.org/10.3390/polym11081336 |
work_keys_str_mv | AT arrigorossella structurepropertyrelationshipsinpolyethylenebasedcompositesfilledwithbiocharderivedfromwastecoffeegrounds AT jagdalepravin structurepropertyrelationshipsinpolyethylenebasedcompositesfilledwithbiocharderivedfromwastecoffeegrounds AT bartolimattia structurepropertyrelationshipsinpolyethylenebasedcompositesfilledwithbiocharderivedfromwastecoffeegrounds AT tagliaferroalberto structurepropertyrelationshipsinpolyethylenebasedcompositesfilledwithbiocharderivedfromwastecoffeegrounds AT malucelligiulio structurepropertyrelationshipsinpolyethylenebasedcompositesfilledwithbiocharderivedfromwastecoffeegrounds |