Cargando…

Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: A Bonanza for Bioremediation?

Millions of people worldwide are at risk of arsenic poisoning from their drinking water. In Bangladesh the problem extends to rural drinking water wells, where non-biological solutions are not feasible. In serial enrichment cultures of water from various Bangladesh drinking water wells, we found tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Zahid, Sultana, Munawar, Khan, Sirajul I., Braster, Martin, Röling, Wilfred F.M., Westerhoff, Hans V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723331/
https://www.ncbi.nlm.nih.gov/pubmed/31398879
http://dx.doi.org/10.3390/microorganisms7080246
Descripción
Sumario:Millions of people worldwide are at risk of arsenic poisoning from their drinking water. In Bangladesh the problem extends to rural drinking water wells, where non-biological solutions are not feasible. In serial enrichment cultures of water from various Bangladesh drinking water wells, we found transfer-persistent arsenite oxidation activity under four conditions (aerobic/anaerobic; heterotrophic/autotrophic). This suggests that biological decontamination may help ameliorate the problem. The enriched microbial communities were phylogenetically at least as diverse as the unenriched communities: they contained a bonanza of 16S rRNA gene sequences. These related to Hydrogenophaga, Acinetobacter, Dechloromonas, Comamonas, and Rhizobium/Agrobacterium species. In addition, the enriched microbiomes contained genes highly similar to the arsenite oxidase (aioA) gene of chemolithoautotrophic (e.g., Paracoccus sp. SY) and heterotrophic arsenite-oxidizing strains. The enriched cultures also contained aioA phylotypes not detected in the previous survey of uncultivated samples from the same wells. Anaerobic enrichments disclosed a wider diversity of arsenite oxidizing aioA phylotypes than did aerobic enrichments. The cultivatable chemolithoautotrophic and heterotrophic arsenite oxidizers are of great interest for future in or ex-situ arsenic bioremediation technologies for the detoxification of drinking water by oxidizing arsenite to arsenate that should then precipitates with iron oxides. The microbial activities required for such a technology seem present, amplifiable, diverse and hence robust.