Cargando…

Preparation and Characterization of Nanocomposite Films Containing Nano-Aluminum Nitride and Cellulose Nanofibrils

Nanocomposites consisting of cellulose nanofibrils (CNFs) and nano-aluminum nitride (AlN) were prepared using a simple vacuum-assisted filtration process. Bleached sugarcane bagasse pulp was treated with potassium hydroxide and sodium chlorite, and was subsequently ultra-finely ground and homogenize...

Descripción completa

Detalles Bibliográficos
Autores principales: Nie, Shuangxi, Zhang, Yuehua, Wang, Linmao, Wu, Qin, Wang, Shuangfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723461/
https://www.ncbi.nlm.nih.gov/pubmed/31382633
http://dx.doi.org/10.3390/nano9081121
Descripción
Sumario:Nanocomposites consisting of cellulose nanofibrils (CNFs) and nano-aluminum nitride (AlN) were prepared using a simple vacuum-assisted filtration process. Bleached sugarcane bagasse pulp was treated with potassium hydroxide and sodium chlorite, and was subsequently ultra-finely ground and homogenized to obtain CNFs. Film nanocomposites were prepared by mixing CNFs with various AlN amounts (0–20 wt.%). X-ray diffraction revealed that the crystal form of CNF-AlN nanocomposites was different to those of pure CNFs and AlN. The mechanical performance and thermal stability of the CNF-AlN nanocomposites were evaluated through mechanical tests and thermogravimetric analysis, respectively. The results showed that the CNF-AlN nanocomposites exhibited excellent mechanical and thermal stability, and represented a green renewable substrate material. This type of nanocomposite could present great potential for replacing traditional polymer substrates, and could provide creative opportunities for designing and fabricating high-performance portable electronics in the near future.