Cargando…

Hafnium-Doped Mesoporous Silica as Efficient Lewis Acidic Catalyst for Friedel–Crafts Alkylation Reactions

The development of an efficient solid catalyst for Friedel–Crafts (FC) reactions is of great importance to organic synthetic chemistry. Herein, we reported the hafnium-doped mesoporous silica catalyst Hf/SBA-15 and its first use for Friedel–Crafts alkylation reactions. Catalysts with different Si/Hf...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yao-Bing, Luo, Yu-Jia, Wang, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723505/
https://www.ncbi.nlm.nih.gov/pubmed/31387334
http://dx.doi.org/10.3390/nano9081128
Descripción
Sumario:The development of an efficient solid catalyst for Friedel–Crafts (FC) reactions is of great importance to organic synthetic chemistry. Herein, we reported the hafnium-doped mesoporous silica catalyst Hf/SBA-15 and its first use for Friedel–Crafts alkylation reactions. Catalysts with different Si/Hf ratios were prepared and characterized, among which Hf/SBA-15(20) (Si/Hf = 20:1) was the most active catalyst, offering up to 99.1% benzylated product under mild reaction conditions. The influences of reaction conditions on the product were systematically investigated and compared. Pyridine-IR characterization of the catalyst showed that Lewis acid formed the primary active sites for the Friedel–Crafts alkylation reaction. X-ray photoelectron spectroscopy (XPS) characterization revealed that the electron shift from the Hf center to the silica framework resulted in a more active Lewis metal center for FC reactions. Moreover, the catalyst was successfully applied to the alkylation reaction with different alcohols and aromatic compounds. Finally, the Hf/SBA-15(20) catalyst also showed good recyclability in the recycling runs, demonstrating its high potential of being used for large scale FC reactions in the industry.