Cargando…
Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes
In this paper, we discuss the effect of alcohol contact on the transport properties of thin-film composite reverse osmosis membranes. Five commercial membranes were studied to quantify the changes in water permeance and sodium chloride rejection from contact with five C1–C4 monohydric, alcohols. Wat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723597/ https://www.ncbi.nlm.nih.gov/pubmed/31357425 http://dx.doi.org/10.3390/membranes9080092 |
_version_ | 1783448806529957888 |
---|---|
author | Idarraga-Mora, Jaime A. Lemelin, Michael A. Weinman, Steven T. Husson, Scott M. |
author_facet | Idarraga-Mora, Jaime A. Lemelin, Michael A. Weinman, Steven T. Husson, Scott M. |
author_sort | Idarraga-Mora, Jaime A. |
collection | PubMed |
description | In this paper, we discuss the effect of alcohol contact on the transport properties of thin-film composite reverse osmosis membranes. Five commercial membranes were studied to quantify the changes in water permeance and sodium chloride rejection from contact with five C1–C4 monohydric, alcohols. Water permeance generally increased without decreasing rejection after short-term contact. The extent of these changes depends on the membrane and alcohol used. Young′s modulus measurements showed decreased stiffness of the active layer after contacting the membranes with alcohol, suggesting plasticization. Data analysis using a dual-mode sorption model identified positive correlations of the initial water permeance, as well as the change in free energy of mixing between water and the alcohols, with the increase in water permeance after alcohol contact. We suggest that the mixing of water with the alcohols facilitates alcohol penetration into the active layer, likely by disrupting inter-chain hydrogen bonds, thus increasing the free volume for water permeation. Our studies provide a modeling framework to estimate the changes in transport properties after short-term contact with C1–C4 alcohols. |
format | Online Article Text |
id | pubmed-6723597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67235972019-09-10 Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes Idarraga-Mora, Jaime A. Lemelin, Michael A. Weinman, Steven T. Husson, Scott M. Membranes (Basel) Article In this paper, we discuss the effect of alcohol contact on the transport properties of thin-film composite reverse osmosis membranes. Five commercial membranes were studied to quantify the changes in water permeance and sodium chloride rejection from contact with five C1–C4 monohydric, alcohols. Water permeance generally increased without decreasing rejection after short-term contact. The extent of these changes depends on the membrane and alcohol used. Young′s modulus measurements showed decreased stiffness of the active layer after contacting the membranes with alcohol, suggesting plasticization. Data analysis using a dual-mode sorption model identified positive correlations of the initial water permeance, as well as the change in free energy of mixing between water and the alcohols, with the increase in water permeance after alcohol contact. We suggest that the mixing of water with the alcohols facilitates alcohol penetration into the active layer, likely by disrupting inter-chain hydrogen bonds, thus increasing the free volume for water permeation. Our studies provide a modeling framework to estimate the changes in transport properties after short-term contact with C1–C4 alcohols. MDPI 2019-07-26 /pmc/articles/PMC6723597/ /pubmed/31357425 http://dx.doi.org/10.3390/membranes9080092 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Idarraga-Mora, Jaime A. Lemelin, Michael A. Weinman, Steven T. Husson, Scott M. Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes |
title | Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes |
title_full | Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes |
title_fullStr | Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes |
title_full_unstemmed | Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes |
title_short | Effect of Short-Term Contact with C1–C4 Monohydric Alcohols on the Water Permeance of MPD-TMC Thin-Film Composite Reverse Osmosis Membranes |
title_sort | effect of short-term contact with c1–c4 monohydric alcohols on the water permeance of mpd-tmc thin-film composite reverse osmosis membranes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723597/ https://www.ncbi.nlm.nih.gov/pubmed/31357425 http://dx.doi.org/10.3390/membranes9080092 |
work_keys_str_mv | AT idarragamorajaimea effectofshorttermcontactwithc1c4monohydricalcoholsonthewaterpermeanceofmpdtmcthinfilmcompositereverseosmosismembranes AT lemelinmichaela effectofshorttermcontactwithc1c4monohydricalcoholsonthewaterpermeanceofmpdtmcthinfilmcompositereverseosmosismembranes AT weinmanstevent effectofshorttermcontactwithc1c4monohydricalcoholsonthewaterpermeanceofmpdtmcthinfilmcompositereverseosmosismembranes AT hussonscottm effectofshorttermcontactwithc1c4monohydricalcoholsonthewaterpermeanceofmpdtmcthinfilmcompositereverseosmosismembranes |