Cargando…
Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. To investigate the effects of dietary EGCG on oxidative stress and the metabolism and toxicity of acetaminophen in the liver, rats were fed diets with (0.54%) or without EGCG supplementation for four weeks and were then...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723635/ https://www.ncbi.nlm.nih.gov/pubmed/31405142 http://dx.doi.org/10.3390/nu11081862 |
_version_ | 1783448815677734912 |
---|---|
author | Yao, Hsien-Tsung Li, Chien-Chun Chang, Chen-Hui |
author_facet | Yao, Hsien-Tsung Li, Chien-Chun Chang, Chen-Hui |
author_sort | Yao, Hsien-Tsung |
collection | PubMed |
description | Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. To investigate the effects of dietary EGCG on oxidative stress and the metabolism and toxicity of acetaminophen in the liver, rats were fed diets with (0.54%) or without EGCG supplementation for four weeks and were then injected intraperitoneally with acetaminophen (1 g/kg). The results showed that EGCG lowered hepatic oxidative stress and cytochrome P450 (CYP) 1A2, 2E1, and 3A, and UDP-glucurosyltransferase activities prior to acetaminophen injection. After acetaminophen challenge, the elevations in plasma alanine aminotransferase activity and histological changes in the liver were ameliorated by EGCG treatment. EGCG reduced acetaminophen-induced apoptosis by lowering the Bax/Bcl2 ratio in the liver. EGCG mildly increased autophagy by increasing the LC3B II/I ratio. Lower hepatic acetaminophen–glutathione and acetaminophen–protein adducts contents were observed after EGCG treatment. EGCG increased glutathione peroxidase and NAD(P)H quinone 1 oxidoreductase activities and reduced organic anion-transporting polypeptides 1a1 expression in the liver after acetaminophen treatment. Our results indicate that EGCG may reduce oxidative stress and lower the metabolism and toxicity of acetaminophen. The reductions in CYP-mediated acetaminophen bioactivation and uptake transporter, as well as enhanced antioxidant enzyme activity, may limit the accumulation of toxic products in the liver and thus lower hepatotoxicity. |
format | Online Article Text |
id | pubmed-6723635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-67236352019-09-10 Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats Yao, Hsien-Tsung Li, Chien-Chun Chang, Chen-Hui Nutrients Article Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. To investigate the effects of dietary EGCG on oxidative stress and the metabolism and toxicity of acetaminophen in the liver, rats were fed diets with (0.54%) or without EGCG supplementation for four weeks and were then injected intraperitoneally with acetaminophen (1 g/kg). The results showed that EGCG lowered hepatic oxidative stress and cytochrome P450 (CYP) 1A2, 2E1, and 3A, and UDP-glucurosyltransferase activities prior to acetaminophen injection. After acetaminophen challenge, the elevations in plasma alanine aminotransferase activity and histological changes in the liver were ameliorated by EGCG treatment. EGCG reduced acetaminophen-induced apoptosis by lowering the Bax/Bcl2 ratio in the liver. EGCG mildly increased autophagy by increasing the LC3B II/I ratio. Lower hepatic acetaminophen–glutathione and acetaminophen–protein adducts contents were observed after EGCG treatment. EGCG increased glutathione peroxidase and NAD(P)H quinone 1 oxidoreductase activities and reduced organic anion-transporting polypeptides 1a1 expression in the liver after acetaminophen treatment. Our results indicate that EGCG may reduce oxidative stress and lower the metabolism and toxicity of acetaminophen. The reductions in CYP-mediated acetaminophen bioactivation and uptake transporter, as well as enhanced antioxidant enzyme activity, may limit the accumulation of toxic products in the liver and thus lower hepatotoxicity. MDPI 2019-08-10 /pmc/articles/PMC6723635/ /pubmed/31405142 http://dx.doi.org/10.3390/nu11081862 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yao, Hsien-Tsung Li, Chien-Chun Chang, Chen-Hui Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats |
title | Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats |
title_full | Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats |
title_fullStr | Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats |
title_full_unstemmed | Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats |
title_short | Epigallocatechin-3-Gallate Reduces Hepatic Oxidative Stress and Lowers CYP-Mediated Bioactivation and Toxicity of Acetaminophen in Rats |
title_sort | epigallocatechin-3-gallate reduces hepatic oxidative stress and lowers cyp-mediated bioactivation and toxicity of acetaminophen in rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723635/ https://www.ncbi.nlm.nih.gov/pubmed/31405142 http://dx.doi.org/10.3390/nu11081862 |
work_keys_str_mv | AT yaohsientsung epigallocatechin3gallatereduceshepaticoxidativestressandlowerscypmediatedbioactivationandtoxicityofacetaminopheninrats AT lichienchun epigallocatechin3gallatereduceshepaticoxidativestressandlowerscypmediatedbioactivationandtoxicityofacetaminopheninrats AT changchenhui epigallocatechin3gallatereduceshepaticoxidativestressandlowerscypmediatedbioactivationandtoxicityofacetaminopheninrats |