Cargando…
Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles
Rapid advance in single-cell RNA sequencing (scRNA-seq) allows measurement of the expression of genes at single-cell resolution in complex disease or tissue. While many methods have been developed to detect cell clusters from the scRNA-seq data, this task currently remains a main challenge. We propo...
Autores principales: | Mallik, Saurav, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723724/ https://www.ncbi.nlm.nih.gov/pubmed/31412637 http://dx.doi.org/10.3390/genes10080611 |
Ejemplares similares
-
Dimensionality Reduction and Louvain Agglomerative Hierarchical Clustering for Cluster-Specified Frequent Biomarker Discovery in Single-Cell Sequencing Data
por: Seth , Soumita, et al.
Publicado: (2022) -
Identification of gene signatures from RNA-seq data using Pareto-optimal cluster algorithm
por: Mallik, Saurav, et al.
Publicado: (2018) -
Detecting methylation signatures in neurodegenerative disease by density-based clustering of applications with reducing noise
por: Mallik, Saurav, et al.
Publicado: (2020) -
ConGEMs: Condensed Gene Co-Expression Module Discovery Through Rule-Based Clustering and Its Application to Carcinogenesis
por: Mallik, Saurav, et al.
Publicado: (2017) -
Optimal ranking and directional signature classification using the integral strategy of multi-objective optimization-based association rule mining of multi-omics data
por: Mallik, Saurav, et al.
Publicado: (2023)