Cargando…
Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles
Curcumin displays anti-cancer, anti-inflammatory and anti-obesity properties but its water insolubility limits the wholesome utility. In this study, curcumin has been encapsulated in an amphiphilic biopolymer to enhance its water solubility. This was accomplished through self-assembly of octenyl suc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723743/ https://www.ncbi.nlm.nih.gov/pubmed/31357427 http://dx.doi.org/10.3390/nano9081073 |
Sumario: | Curcumin displays anti-cancer, anti-inflammatory and anti-obesity properties but its water insolubility limits the wholesome utility. In this study, curcumin has been encapsulated in an amphiphilic biopolymer to enhance its water solubility. This was accomplished through self-assembly of octenyl succinic anhydride–short glucan chains (OSA–SGC) and curcumin. The nanoparticles were prepared with the degree of substitution (DS) of 0.112, 0.286 and 0.342 of OSA. Thus prepared nanoparticles were in the range of 150–200 nm and display high encapsulation efficiency and high loading capacity of curcumin. The Fourier-transform infrared (FTIR) and X-ray diffraction analyses confirmed the curcumin loading in the OSA–SGC nanoparticles. The complexes possessed a V-type starch structure. The thermo gravimetric analysis (TGA) revealed the thermal stability of encapsulated curcumin. The OSA–SGC nanoparticles greatly improved the curcumin release and dissolution, and in-turn promoted the sustained release. |
---|