Cargando…

Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries

Polyethylene (PE) membranes coated with nano-Al(2)O(3) have been improved with water-dispersed poly(p-phenylene terephthamide) (PPTA). From the scanning electron microscope (SEM) images, it can be seen that a layer with a honeycombed porous structure is formed on the membrane. The thus-formed compos...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Haopeng, Yang, Guoping, Meng, Zihan, Yin, Xue, Zhang, Haining, Tang, Haolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723745/
https://www.ncbi.nlm.nih.gov/pubmed/31426595
http://dx.doi.org/10.3390/polym11081362
_version_ 1783448841729605632
author Cai, Haopeng
Yang, Guoping
Meng, Zihan
Yin, Xue
Zhang, Haining
Tang, Haolin
author_facet Cai, Haopeng
Yang, Guoping
Meng, Zihan
Yin, Xue
Zhang, Haining
Tang, Haolin
author_sort Cai, Haopeng
collection PubMed
description Polyethylene (PE) membranes coated with nano-Al(2)O(3) have been improved with water-dispersed poly(p-phenylene terephthamide) (PPTA). From the scanning electron microscope (SEM) images, it can be seen that a layer with a honeycombed porous structure is formed on the membrane. The thus-formed composite separator imbibed with the electrolyte solution has an ionic conductivity of 0.474 mS/cm with an electrolyte uptake of 335%. At 175 °C, the assembled battery from the synthesized composite separator explodes at 3200 s, which is five times longer than the battery assembled from an Al(2)O(3)-coated polyethylene (PE) membrane. The open circuit voltage of the assembled battery using a composite separator drops to zero at 600 s at an operating temperature of 185 °C, while the explosion of the battery with Al(2)O(3)-coated PE occurs at 250 s. More importantly, the interface resistance of the cell assembled from the composite separator decreases to 65 Ω. Hence, as the discharge rate increases from 0.2 to 1.0 C, the discharge capacity of the battery using composite separator retains 93.5%. Under 0.5 C, the discharge capacity retention remains 99.4% of its initial discharge capacity after 50 charge–discharge cycles. The results described here demonstrate that Al(2)O(3)/PPTA-coated polyethylene membranes have superior thermal stability and ion diffusion.
format Online
Article
Text
id pubmed-6723745
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-67237452019-09-10 Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries Cai, Haopeng Yang, Guoping Meng, Zihan Yin, Xue Zhang, Haining Tang, Haolin Polymers (Basel) Article Polyethylene (PE) membranes coated with nano-Al(2)O(3) have been improved with water-dispersed poly(p-phenylene terephthamide) (PPTA). From the scanning electron microscope (SEM) images, it can be seen that a layer with a honeycombed porous structure is formed on the membrane. The thus-formed composite separator imbibed with the electrolyte solution has an ionic conductivity of 0.474 mS/cm with an electrolyte uptake of 335%. At 175 °C, the assembled battery from the synthesized composite separator explodes at 3200 s, which is five times longer than the battery assembled from an Al(2)O(3)-coated polyethylene (PE) membrane. The open circuit voltage of the assembled battery using a composite separator drops to zero at 600 s at an operating temperature of 185 °C, while the explosion of the battery with Al(2)O(3)-coated PE occurs at 250 s. More importantly, the interface resistance of the cell assembled from the composite separator decreases to 65 Ω. Hence, as the discharge rate increases from 0.2 to 1.0 C, the discharge capacity of the battery using composite separator retains 93.5%. Under 0.5 C, the discharge capacity retention remains 99.4% of its initial discharge capacity after 50 charge–discharge cycles. The results described here demonstrate that Al(2)O(3)/PPTA-coated polyethylene membranes have superior thermal stability and ion diffusion. MDPI 2019-08-18 /pmc/articles/PMC6723745/ /pubmed/31426595 http://dx.doi.org/10.3390/polym11081362 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cai, Haopeng
Yang, Guoping
Meng, Zihan
Yin, Xue
Zhang, Haining
Tang, Haolin
Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries
title Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries
title_full Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries
title_fullStr Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries
title_full_unstemmed Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries
title_short Water-Dispersed Poly(p-Phenylene Terephthamide) Boosting Nano-Al(2)O(3)-Coated Polyethylene Separator with Enhanced Thermal Stability and Ion Diffusion for Lithium-Ion Batteries
title_sort water-dispersed poly(p-phenylene terephthamide) boosting nano-al(2)o(3)-coated polyethylene separator with enhanced thermal stability and ion diffusion for lithium-ion batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723745/
https://www.ncbi.nlm.nih.gov/pubmed/31426595
http://dx.doi.org/10.3390/polym11081362
work_keys_str_mv AT caihaopeng waterdispersedpolypphenyleneterephthamideboostingnanoal2o3coatedpolyethyleneseparatorwithenhancedthermalstabilityandiondiffusionforlithiumionbatteries
AT yangguoping waterdispersedpolypphenyleneterephthamideboostingnanoal2o3coatedpolyethyleneseparatorwithenhancedthermalstabilityandiondiffusionforlithiumionbatteries
AT mengzihan waterdispersedpolypphenyleneterephthamideboostingnanoal2o3coatedpolyethyleneseparatorwithenhancedthermalstabilityandiondiffusionforlithiumionbatteries
AT yinxue waterdispersedpolypphenyleneterephthamideboostingnanoal2o3coatedpolyethyleneseparatorwithenhancedthermalstabilityandiondiffusionforlithiumionbatteries
AT zhanghaining waterdispersedpolypphenyleneterephthamideboostingnanoal2o3coatedpolyethyleneseparatorwithenhancedthermalstabilityandiondiffusionforlithiumionbatteries
AT tanghaolin waterdispersedpolypphenyleneterephthamideboostingnanoal2o3coatedpolyethyleneseparatorwithenhancedthermalstabilityandiondiffusionforlithiumionbatteries