Cargando…
Comparison of Target Features for Predicting Drug-Target Interactions by Deep Neural Network Based on Large-Scale Drug-Induced Transcriptome Data
Uncovering drug-target interactions (DTIs) is pivotal to understand drug mode-of-action (MoA), avoid adverse drug reaction (ADR), and seek opportunities for drug repositioning (DR). For decades, in silico predictions for DTIs have largely depended on structural information of both targets and compou...
Autores principales: | Lee, Hanbi, Kim, Wankyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723794/ https://www.ncbi.nlm.nih.gov/pubmed/31382356 http://dx.doi.org/10.3390/pharmaceutics11080377 |
Ejemplares similares
-
Overfit deep neural network for predicting drug-target interactions
por: Xiaolin, Xiao, et al.
Publicado: (2023) -
A Novel Deep Neural Network Technique for Drug–Target Interaction
por: de Souza, Jackson G., et al.
Publicado: (2022) -
Deep Neural Network-Assisted Drug Recommendation Systems
for Identifying Potential Drug–Target Interactions
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
por: Rayhan, Farshid, et al.
Publicado: (2020) -
Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures
por: Lee, Haeseung, et al.
Publicado: (2016)