Cargando…

Mechanical, Electrical and Rheological Behavior of Ethylene-Vinyl Acetate/Multi-Walled Carbon Nanotube Composites

This paper investigates the rheological, mechanical and electrical properties of a Ethylene-Vinyl Acetate (EVA) polymer filled with 1, 3 and 5 wt.% multi-walled carbon nanotubes (MWCNTs). The melt flow and pressure-volume-Temperature (pvT) behaviors of the EVA/MWCNT composites were investigated usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Stanciu, Nicoleta-Violeta, Stan, Felicia, Sandu, Ionut-Laurentiu, Susac, Florin, Fetecau, Catalin, Rosculet, Razvan-Tudor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723935/
https://www.ncbi.nlm.nih.gov/pubmed/31382510
http://dx.doi.org/10.3390/polym11081300
Descripción
Sumario:This paper investigates the rheological, mechanical and electrical properties of a Ethylene-Vinyl Acetate (EVA) polymer filled with 1, 3 and 5 wt.% multi-walled carbon nanotubes (MWCNTs). The melt flow and pressure-volume-Temperature (pvT) behaviors of the EVA/MWCNT composites were investigated using a high-pressure capillary rheometer, while the electro-mechanical response was investigated on injection-molded samples. Rheological experiments showed that the melt shear viscosity of the EVA/MWCNT composite is dependent on nanotube loading and, at high shear rates, the viscosity showed temperature-dependent shear thinning behavior with a flow index n < 0.35. The specific volume of the EVA/MWCNT composite decreased with increasing pressure and MWCNT wt.%. The transition temperature, corresponding to the pvT crystallization, increased linearly with increasing pressure, i.e., about 20 to 30 °C when cooling under pressure. The elastic modulus, tensile strength and stress at break increased with increasing MWCNT wt.%, whereas the strain at break decreased, suggesting the formation of MWCNT secondary agglomerates. The electrical conductivity of the EVA/MWCNT composite increased with increasing MWCNT wt.% and melt temperature, reaching ~10(−2) S/m for the composite containing 5 wt.% MWCNTs. Using the statistical percolation theory, the percolation threshold was estimated at 0.9 wt.% and the critical exponent at 4.95.