Cargando…
In Situ Modification of Polyisoprene by Organo-Nanoclay during Emulsion Polymerization for Reinforcing Natural Rubber Thin Films
Nanoclay-modified polyisoprene latexes were prepared and then used as a reinforcing component in natural rubber (NR) thin films. Starve-fed emulsion (SFE) polymerization gives a higher conversion than the batch emulsion (BE), while the gel and coagulation contents from both systems are comparable. T...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723953/ https://www.ncbi.nlm.nih.gov/pubmed/31409053 http://dx.doi.org/10.3390/polym11081338 |
Sumario: | Nanoclay-modified polyisoprene latexes were prepared and then used as a reinforcing component in natural rubber (NR) thin films. Starve-fed emulsion (SFE) polymerization gives a higher conversion than the batch emulsion (BE), while the gel and coagulation contents from both systems are comparable. This is attributed to the SFE that provides a smaller average polymer particle size which in turn results in a greater polymerization locus, promoting the reaction rate. The addition of organo-nanoclay during synthesizing polyisoprene significantly lessens the polymerization efficiency because the nanoclay has a potential to suppress nucleation process of the reaction. It also intervenes the stabilizing efficiency of the surfactant—SDS or sodium dodecyl sulfate, giving enlarged average sizes of the polymer particles suspended in the latexes. TEM images show that nanoclay particles are attached on and/or inserted in the polymer particles. XRD and thermal (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)) analyses were employed to assess the d-spacing of nanoclay structure in NR nanocomposite films, respectively. Based on the overall results, 5 wt% of nanoclay relative to the monomer content utilized to alter the polyisoprene during emulsion polymerization is an optimum amount since the silicate plates of nanoclay in the composite exhibit the largest d-spacing which maximizes the extent of immobilized polymer constituent, giving the highest mechanical properties to the films. The excessive amounts of nanoclay used, i.e., 7 and 10 wt% relative to the monomer content, reduce the reinforcing power because of the re-agglomeration effect. |
---|