Cargando…

Functional Characterization of Physcomitrella patens Glycerol-3-Phosphate Acyltransferase 9 and an Increase in Seed Oil Content in Arabidopsis by Its Ectopic Expression

Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate acyltransferas...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Sun Ui, Kim, Juyoung, Kim, Hyojin, Suh, Mi Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724121/
https://www.ncbi.nlm.nih.gov/pubmed/31412690
http://dx.doi.org/10.3390/plants8080284
Descripción
Sumario:Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate acyltransferase 9 (GPAT9), which catalyzes the synthesis of lysophosphatidic acid (LPA) from a glycerol-3-phosphate and acyl-CoA, was isolated from Physcomitrella patens, which produces high levels of very-long-chain PUFAs in protonema and gametophores. P. patens GPAT9 shares approximately 50%, 60%, and 70% amino acid similarity with GPAT9 from Chlamydomonas reinhardtii, Klebsormidium nitens, and Arabidopsis thaliana, respectively. PpGPAT9 transcripts were detected in both the protonema and gametophores. Fluorescent signals from the eYFP:PpGPAT9 construct were observed in the ER of Nicotiana benthamiana leaf epidermal cells. Ectopic expression of PpGPAT9 increased the seed oil content by approximately 10% in Arabidopsis. The levels of PUFAs (18:2, 18:3, and 20:2) and saturated FAs (16:0, 18:0, and 20:0) increased by 60% and 43%, respectively, in the storage oil of the transgenic seeds when compared with the wild type. The transgenic embryos with increased oil content contained larger embryonic cells than the wild type. Thus, PpGPAT9 may be a novel genetic resource to enhance storage oil yields from oilseed crops.