Cargando…

Metal–Organic‐Framework‐Derived Carbon Nanostructures for Site‐Specific Dual‐Modality Photothermal/Photodynamic Thrombus Therapy

Although near‐infrared (NIR)‐light‐mediated photothermal thrombolysis has been investigated to overcome the bleeding risk of clinical clot‐busting agents, the secondary embolism of post‐phototherapy fragments (>10 µm) for small vessels should not be ignored in this process. In this study, dual‐mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Fengrong, Liu, Yuehong, Lei, Jiani, Wang, Shunhao, Ji, Xunming, Liu, Huiyu, Yang, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724354/
https://www.ncbi.nlm.nih.gov/pubmed/31508294
http://dx.doi.org/10.1002/advs.201901378
Descripción
Sumario:Although near‐infrared (NIR)‐light‐mediated photothermal thrombolysis has been investigated to overcome the bleeding risk of clinical clot‐busting agents, the secondary embolism of post‐phototherapy fragments (>10 µm) for small vessels should not be ignored in this process. In this study, dual‐modality photothermal/photodynamic thrombolysis is explored using targeting nanoagents with an emphasis on improving biosafety as well as ameliorating the thrombolytic effect. The nanoagents can actively target glycoprotein IIb/IIIa receptors on thrombus to initiate site‐specific thrombolysis by hyperthermia and reactive oxygen species under NIR laser irradiation. In comparison to single photothermal thrombolysis, an 87.9% higher re‐establishment rate of dual‐modality photothermal/photodynamic thrombolysis by one‐time treatment is achieved in a lower limb thrombosis model. The dual‐modality thrombolysis can also avoid re‐embolization after breaking fibrin into tiny fragments. All the results show that this strategy is a safe and validated protocol for thrombolysis, which fits the clinical translational trend of nanomedicine.