Cargando…
Efficient Red/Near‐Infrared‐Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence
Red/near‐infrared (NIR) emissive carbon nanodots (CNDs) with photoluminescence (PL) quantum yield (QY) of 57% are prepared via an in situ solvent‐free carbonization strategy for the first time. 1‐Photon and 2‐photon cellular imaging is demonstrated by using the CNDs as red/NIR fluorescence agent due...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724478/ https://www.ncbi.nlm.nih.gov/pubmed/31508282 http://dx.doi.org/10.1002/advs.201900766 |
Sumario: | Red/near‐infrared (NIR) emissive carbon nanodots (CNDs) with photoluminescence (PL) quantum yield (QY) of 57% are prepared via an in situ solvent‐free carbonization strategy for the first time. 1‐Photon and 2‐photon cellular imaging is demonstrated by using the CNDs as red/NIR fluorescence agent due to the high PL QY and low biotoxicity. Further study shows that the red/NIR CNDs exhibit multiphoton excited (MPE) upconversion fluorescence under excitation of 800–2000 nm, which involves three NIR windows (NIR‐I, 650–950 nm; NIR‐II, 1100–1350; NIR‐III, 1600–1870 nm). 2‐Photon, 3‐photon, and 4‐photon excited fluorescence of the CNDs under excitation of different wavelengths is achieved. This study develops an in situ solvent‐free carbonization method for efficient red/NIR emissive CNDs with MPE upconversion fluorescence, which may push forward the application of the CNDs in bioimaging. |
---|