Cargando…
Applications and limitations of machine learning in radiation oncology
Machine learning approaches to problem-solving are growing rapidly within healthcare, and radiation oncology is no exception. With the burgeoning interest in machine learning comes the significant risk of misaligned expectations as to what it can and cannot accomplish. This paper evaluates the role...
Autores principales: | Jarrett, Daniel, Stride, Eleanor, Vallis, Katherine, Gooding, Mark J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724618/ https://www.ncbi.nlm.nih.gov/pubmed/31112393 http://dx.doi.org/10.1259/bjr.20190001 |
Ejemplares similares
-
Machine learning applications in radiation oncology
por: Field, Matthew, et al.
Publicado: (2021) -
Machine learning in radiation oncology: theory and applications
por: El Naqa, Issam, et al.
Publicado: (2015) -
Editorial: Machine learning in radiation oncology
por: Zhao, Wei, et al.
Publicado: (2022) -
Radiomics in radiation oncology—basics, methods, and limitations
por: Lohmann, Philipp, et al.
Publicado: (2020) -
Machine learning applications in radiation oncology: Current use and needs to support clinical implementation
por: Brouwer, Charlotte L., et al.
Publicado: (2020)