Cargando…
Long-range, through-lattice coupling improves predictions of microtubule catastrophe
Microtubules are cylindrical polymers of αβ-tubulin that play critical roles in fundamental processes such as chromosome segregation and vesicular transport. Microtubules display dynamic instability, switching stochastically between growth and rapid shrinking as a consequence of GTPase activity in t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724698/ https://www.ncbi.nlm.nih.gov/pubmed/30943103 http://dx.doi.org/10.1091/mbc.E18-10-0641 |
Sumario: | Microtubules are cylindrical polymers of αβ-tubulin that play critical roles in fundamental processes such as chromosome segregation and vesicular transport. Microtubules display dynamic instability, switching stochastically between growth and rapid shrinking as a consequence of GTPase activity in the lattice. The molecular mechanisms behind microtubule catastrophe, the switch from growth to rapid shrinking, remain poorly defined. Indeed, two-state stochastic models that seek to describe microtubule dynamics purely in terms of the biochemical properties of GTP- and GDP-bound αβ-tubulin predict the concentration dependence of microtubule catastrophe incorrectly. Recent studies provide evidence for three distinct conformations of αβ-tubulin in the lattice that likely correspond to GTP, GDP.P(i), and GDP. The incommensurate lattices observed for these different conformations raise the possibility that in a mixed nucleotide state lattice, neighboring tubulin dimers might modulate each other’s conformations and hence each other’s biochemistry. We explored whether incorporating a GDP.P(i) state or the likely effects of conformational accommodation can improve predictions of catastrophe. Adding a GDP.P(i) intermediate did not improve the model. In contrast, adding neighbor-dependent modulation of tubulin biochemistry improved predictions of catastrophe. Because this conformational accommodation should propagate beyond nearest-neighbor contacts, our modeling suggests that long-range, through-lattice effects are important determinants of microtubule catastrophe. |
---|