Cargando…

NFAT5 is differentially expressed in Sprague-Dawley rat tissues in response to high salt and high fructose diets

Current diets contain an increasing amount of salt and high fructose corn syrup, but it remains unclear as to how dietary salt and fructose affect organ function at the molecular level. This study aimed to test the hypothesis that consumption of high salt and fructose diets would increase tissue-spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Herman, Braden A., Ferguson, Kaylee M., Fernandez, Jared V.B., Kauffman, Samantha, Spicher, Jason T., King, Rachel J., Halterman, Julia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Genética 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726159/
https://www.ncbi.nlm.nih.gov/pubmed/30816906
http://dx.doi.org/10.1590/1678-4685-GMB-2018-0120
Descripción
Sumario:Current diets contain an increasing amount of salt and high fructose corn syrup, but it remains unclear as to how dietary salt and fructose affect organ function at the molecular level. This study aimed to test the hypothesis that consumption of high salt and fructose diets would increase tissue-specific expression of two critical osmotically-regulated genes, nuclear factor of activated T-cells 5 (NFAT5) and aldose reductase (AR). Fifty Sprague-Dawley rats were placed on a control, 4% NaCl, 8% NaCl, or 64% fructose diet for eight weeks. Fourteen different tissue samples were harvested and snap-frozen, followed by RNA purification, cDNA synthesis, and NFAT5 and AR gene expression quantification by real-time PCR.Our findings demonstrate that NFAT5 and AR expression are up-regulated in the kidney medulla, liver, brain, and adipose tissue following consumption of a high salt diet. NFAT5 expression is also up-regulated in the kidney cortex following consumption of a 64% fructose diet. These findings highlight the kidney medulla, liver, brain, and adipose tissue as being “salt-responsive” tissues and reveal that a high fructose diet can lead to enhanced NFAT5 expression in the kidney cortex. Further characterization of signaling mechanisms involved could help elucidate how these diets affect organ function long term.