Cargando…

Posturographic characteristics of the standing posture and the effects of the treatment of obesity on obese young women

To determine the impact of body weight on quiet standing postural sway characteristics in young women, this research compared spontaneous oscillations of the center of foot pressure (COP) between 32 obese (BMI: 36.4 ± 5.2 kg/m(2)), and 26 normal-weight (BMI: 21.4 ± 1.5 kg/m(2)) women and assessed th...

Descripción completa

Detalles Bibliográficos
Autores principales: Cieślińska-Świder, Joanna Magdalena, Błaszczyk, Janusz Wiesław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726190/
https://www.ncbi.nlm.nih.gov/pubmed/31483797
http://dx.doi.org/10.1371/journal.pone.0220962
Descripción
Sumario:To determine the impact of body weight on quiet standing postural sway characteristics in young women, this research compared spontaneous oscillations of the center of foot pressure (COP) between 32 obese (BMI: 36.4 ± 5.2 kg/m(2)), and 26 normal-weight (BMI: 21.4 ± 1.5 kg/m(2)) women and assessed the influence of obesity treatment and body weight reduction on postural sway. Trajectories of the COP were assessed while the subjects were standing quietly with eyes open (EO) and closed (EC). Both in the sagittal (AP) and frontal (ML) planes the sway range, average velocity, and maximal velocity of COP were calculated. Moreover, the total average and maximal velocities were computed. In the obese group, the tests were performed twice–before and after the obesity treatment. A greater (18% in EC) AP sway range and a substantial reduction of ML sway (25% in EO, 22% in EC) were observed in the obese women. The total COP velocities (average and maximal) were decreased in obese women (20% and 20% in EO) as well as the velocities in the frontal plane (EO: 33%, 41%; EC: 34%, 40%). Body weight reduction resulted in significant changes in postural sway. The following parameters increased: ML sway range (28% in EO), average (20% in EO, 16% in EC) and maximal ML (20% in EO) velocities. The results indicate that young obese women in the habitual standing position are characterized by the destabilizing influence of mass in the sagittal plane only in the absence of a visual control. This effect is dominated by the stabilizing mass effect in the frontal plane, which affects overall postural stability when standing. The reduction of body mass enables a decrease in ML static stability, likely due to natural changes in the base of support while standing.