Cargando…
Predicting the future direction of cell movement with convolutional neural networks
Image-based deep learning systems, such as convolutional neural networks (CNNs), have recently been applied to cell classification, producing impressive results; however, application of CNNs has been confined to classification of the current cell state from the image. Here, we focused on cell moveme...
Autores principales: | Nishimoto, Shori, Tokuoka, Yuta, Yamada, Takahiro G., Hiroi, Noriko F., Funahashi, Akira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726366/ https://www.ncbi.nlm.nih.gov/pubmed/31483827 http://dx.doi.org/10.1371/journal.pone.0221245 |
Ejemplares similares
-
3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis
por: Tokuoka, Yuta, et al.
Publicado: (2020) -
Activation of cell migration via morphological changes in focal adhesions depends on shear stress in MYCN-amplified neuroblastoma cells
por: Hiraiwa, Takumi, et al.
Publicado: (2019) -
Intercellular interaction mechanisms promote diversity in intracellular ATP concentration in Escherichia coli populations
por: Nakatani, Ryo J., et al.
Publicado: (2022) -
XitoSBML: A Modeling Tool for Creating Spatial Systems Biology Markup Language Models From Microscopic Images
por: Ii, Kaito, et al.
Publicado: (2019) -
Assessing uncertainty in model parameters based on sparse and noisy experimental data
por: Hiroi, Noriko, et al.
Publicado: (2014)