Cargando…
Locally Linear Embedding and fMRI Feature Selection in Psychiatric Classification
Background: Functional magnetic resonance imaging (fMRI) provides non-invasive measures of neuronal activity using an endogenous Blood Oxygenation-Level Dependent (BOLD) contrast. This article introduces a nonlinear dimensionality reduction (Locally Linear Embedding) to extract informative measures...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726465/ https://www.ncbi.nlm.nih.gov/pubmed/31497410 http://dx.doi.org/10.1109/JTEHM.2019.2936348 |
Ejemplares similares
-
Generative Embedding for Model-Based Classification of fMRI Data
por: Brodersen, Kay H., et al.
Publicado: (2011) -
Multivariate spatial feature selection in fMRI
por: Jolly, E, et al.
Publicado: (2021) -
Feature selection for fMRI-based deception detection
por: Jin, Bo, et al.
Publicado: (2009) -
Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification
por: Xu, Jiucheng, et al.
Publicado: (2018) -
A Window into the Brain: Advances in Psychiatric fMRI
por: Zhan, Xiaoyan, et al.
Publicado: (2015)